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ABSTRACT 

The paper presents the concept and initial tests from the hardware implementation of a low-power, high-speed 
reconfigurable sensor fusion processor. The Extended Logic Intelligent Processing System (ELIPS) processor is developed to 
seamlessly combine rule-based systems, fuzzy logic, and neural networks to achieve parallel fusion of sensor in compact low 
power VLSI. The first demonstration of the ELIPS concept targets interceptor functionality; other applications, mainly in 
robotics and autonomous systems are considered for the future. The main assumption behind ELIPS is that fuzzy, rule-based 
and neural forms of computation can serve as the main primitives of an “intelligent I ’  processor. Thus, in the same way 
classic processors  are designed to optimize the hardware implementation of a set of fundamental operations, ELIPS is 
developed as an efficient implementation of computational intelligence primitives,  and relies on a set of fuzzy set, fuzzy 
inference and neural modules, built in  programmable analog hardware. The hardware programmability allows the processor 
to reconfigure into dEfSerent machines, taking the most efficient hardware implementation during each  phase of information 
processing. Following software demonstrations on several interceptor data, three important ELIPS building blocks (a fuzzy 
set preprocessor, a rule-based fuzzy system and  a neural network) have been fabricated  in analog VLSI hardware and 
demonstrated microsecond-processing times. 
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1. INTRODUCTION 

1.1 A general need for sensor fusion processors 

With the advent of recent increasingly high-performance sensors and processing power a plethora of novel applications are 
imagined using multiple sensors, many times of various complementary nature. Novel architectures, algorithms and 
hardware are required to optimally address the sensor fusion challenges of high-bandwidth, often noisy, sometimes 
contradictory data. The problem of using more sensors with higher data rates is aggravated by the  need for faster response 
time, which demands higher levels of computational power. The traditional approach is to builduse increasingly powerful 
general-purpose processors. Yet, classical algorithms for fusing data (originating in preponderant Bayesian approaches) face 
challenges in addressing the sensor-fusion problem and need complementedoverridden by novel approaches, such as the 
ones  coming from the computational intelligence research. 

Computational intelligence techniques, such as fuzzy logic and neural networks combined with the more traditional Artificial 
Intelligence paradigm of expert systems proved efficient in a solving a category of problems for which an accurate 
mathematical formulation of models was either not feasible or practically impossible to compute in useful time. The most 
eloquent examples of such problems are in pattern recognition and decision-making applications. These techniques are 
essentially parallel, and thus it is natural to build dedicated processors efficient for these types of operations, which would 
function in stand-alone mode or as co-processors to provide high-speed computation on massive amounts of data in parallel 
mode. While these processors can be built both in digital or analog hardware, the massive amount of interconnection lines of 
a parallel implementation and the power requirements encountered in certain space, military or commercial applications such 
as hand-held devices  make  the idea of an analog ASIC processor preferable. An example of such an application requiring 
low power fast processing of sensor data is associated with the discrimination performed onboard interceptors. 



2.2 Discriminating Interceptor Technology requirements for an on-board sensor fusion processor 
The Ballistic Missile Defense Organization (BMDO) is conducting the Discriminating Interceptor Technology Program 
(DITP) for the development of advanced and  enabling  fast frame seeker capabilities. The  challenge  for  the technology is to 
combat more complex future threats facing the National and Theater Missile Defense (NMD/TMD).  The objective is to 
develop miniaturized interceptor components and subsystems to meet serious space, weight, and power constraints [I]. In 
this regard, part of a major effort is directed towards the development of new sensor data fusion processing technology that 
will particularly address high speed and on-board autonomy. This capability can achieve earlier target acquisition, thereby 
extending  the time-to-engage and reducing the dependence on the external battle management and off-board surveillance 
assets [ 11. 
Once  the initially required off-board battle management intelligence is provided to the seeker,  the primary goal of the DITP is 
to exploit the multi-phenomenological sensor data obtained from on-board LADAR and infrared detector arrays for threat 
engagement via development and integration of real-time sensor fusion algorithms and processors. The overriding 
hypothesis is that sensor data fusion at three levels (i.e.,  signal, feature, and decision) is necessary to improve its capability 
and  to accommodate a  wide variety of missions and targets. 
In order to meet the challenge of compact, low power, and high-speed on-board data processing, a novel intelligent sensor 
data fusion processing architecture, termed the Extended Logic Intelligent Processing System (ELIPS), has been developed. 
ELIPS integrates the analog hardware technology of neural networks, fuzzy logic, and expert rule processing with the 
conventional digital processing using a host computer. The individual modules are designed to be reconfigurable and 
cascadable. In addition, the overall architecture has been developed to  be flexible enough for rerouting of signals to any 
required processing module by having an interconnecting network with switching arrays. 
This paper briefly describes the ELIPS concept and architecture, focusing more on the hardware implementation of the 
individual ELIPS component modules. Experiments with test chips implementing ELIPS modules illustrate the performance 
of the analog ASIC implementation. 

2. FUZZY, EXPERT AND NEURAL COMPUTATION: FUNDAMENTALS AND PREVIOUS 
DEDICATED HARDWARE IMPLEMENTATIONS 

2.1 Fundamentals of fuzzy, expert and neural computation 

Expert systems are considered in the sensor fusion literature to have a variety of utilities. An example detailed in [2] is 
guiding  the user in defining the architecture for the sensor fusion system. Fuzzy logic and neural networks  are also becoming 
widely accepted in the sensor fusion community as techniques which proved powerful in sensor fusion applications [3], [4]. 
Conditional rule-based systems  are using rules of the form “IF a is A AND b is B THEN y is Y’ where a, b, and y the input 
and  output variables respectively, and A, B, Y are classes - in particular fuzzy classes/sets. Thus, a rule-base system can be 
seen as accepting input data from measurements or preprocessing and providing outputs as transformed by the rules. In 
particular the outputs could be associated with classes to which the inputs cluster and the magnitude of the outputs associated 
to  the degree of membership  to these classes. (Another possible interpretation is that the numbers represent the confidence in 
the classification, e.g. 70% confidence that the  object is targetl,  20% that it  is target2, 10% confidence that it  is decoy. 

New concepts from fuzzy sets theory have revitalized the use of rule-base system, which can thus better cope with the 
imprecision in matching antecedent clauses. The main operations of fuzzy reasoning are fuzzification, rule evaluations and 
defuzzification. Fuzzification transforms a crisp input to  a  degree of membership to  a fuzzy set and certain rules are evaluated 
depending on which fuzzy sets are matched. For certain problems such as classification, this is the end of fuzzy reasoning - 
the output results are fuzzy sets and  degrees  to which they are matched. For example, the output result can be  that input 
signals match the characteristics of target A  to 0.8 extent, targets B in degree 0.4 and decoys in degree 0.3; sometimes this 
can be (improperly) expressed as probabilities, i.e., there is 80% chance/probability/confidence that object is target A, etc. If 
the desired output is a crisp one, for example an output control signal - the output sets and  the associated degrees of 
memberships are transformed by a defuzzifier into a crisp value. Amongst the most popular methods for defuzzification is the 
center of gravity method, which requires mainly additions and multiplication and division. 
Neural networks are parallel computation structures characterized by somatic operation between inputs and weights and 
somatic  operations aggregating the weighted inputs and usually passing them through a nonlinear function. Different neural 
architectures were explored, with different ways of interconnecting the  neurons in feed-forward only or in recurrent mode as 
well, and with a variety of learning rules. 



Requirements for  fast  processing,  compact or  low power implementation lead  to efforts for  developing various hardware 
implementations.  The  nature  of  computations involved  in fuzzy  reasoning is essentially parallel (for  example, rule 
evaluations  are  independent of each  other and  can be  calculated concurrently).  A dedicated  parallel  hardware solution is 
therefore  preferable to a software  solution on  a general-purpose processor and  even to a RISC  processor with fuzzy-oriented 
instructions like VY86C570  (70-microsecond  inference  speed) [5]. Ideally one  would  want  to  preserve  high versatility of 
general-purpose  processors  while reaching low-power  high-speed  operation.  Analog  offers  the  advantage of lower  power 
consumption.  While  better precision  can  be obtained in digital  implementations, very precise  computations  are  not required 
for  fuzzy  processing; usually 8 bits are  considered  sufficient  for  most  applications.  (This  relaxed  restriction on  precision  is 
due  to  the  fact  that  membership fimctions representing  fuzzy classes are usually defined by humans,  who can do  not specify 
fuzzy  set  borders  with  high precision - usually with less than 8 bits) [7-91. 
The  same parallelism is true  for  neural  processing, and ideally hardware  implementations  should be parallel for maximum 
efficiency. In the  same way as  for  fuzzy  expert systems, large number  of  interconnections and  low power  justify  analog 
VLSI  implementations of neural  processors. For a  detailed justification of analog neural processors  see [lo]. 
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3. ELIPS CONCEPT AND ARCHITECTURE 

The main assumption behind ELIPS is that  fuzzy, rule-based  and neural  forms of computation  can  serve  as  the main 
primitives of  an  “intelligent”  processor.  Thus, in the  same  way  classic  processors  are  designed  to  optimize  the  hardware 
implementation of a set  of  fundamental  operations,  ELIPS is developed  as an efficient  implementation of computational 
intelligence primitives, and relies on  a set of fuzzy set, fuzzy  inference  and neural modules,  built in programmable  analog 
hardware. The hardware  programmability  allows  the  processor to reconfigure into different  machines,  taking  the  most 
efficient  hardware  implementation  during  each  phase  of information  processing. 
The  ELIPS  architecture is designed  to  accomplish,  for  the first time, a fully parallel implementation  and  seamless integration 
of  three artificial/computational intelligence technologies: ( 1 )  membership-function-based  fuzzy  logic; (2) rule-based expert 
systems; and (3) massively parallel artificial neural network. In its initial demon’stration ELIPS will perform  various  DITP 
functions  of  discrimination,  recognition,  tracking,  and  homing [2]. It is necessary to  develop a design  that is hardware- 
implementable  using  very large scale integration (VLSI)  technology  to  provide an ultra low power  embodiment in  a compact 
package, with  an unprecedented  signal  processing speed (1 0 to 15 microseconds  for  each  operation),  at least three  orders  of 
magnitude  faster  compared  to a conventional  digital  machine  (e.g.  several  milliseconds on  a personal  computer,  PC). 

ELIPS is envisaged  as a synergistic  processor  incorporating  four  processing  modules  illustrated in Figure  1.  FSP is a  Fuzzy 
Set  Processor, MERP  stands  for  Multistage  Expert  Rule  Processor,  and  PFN and  PRN refer to Programmable Feed-forward 
and Recurrent (feedback)  Neural  networks,  respectively.  ELIPS  modules  are  destined  to  work  cooperatively in  a variety  of 
configuration  sequences.  For  example,  to implement  fuzzy expert  reasoning as a processing  sequence of FSP, MERP and 
PFN modules,  fuzzification is performed by  FSP, rule  evaluation is done by  MERP, while defuzzification  (when needed) is 
done  using  the  PFN. 
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Figure 1. ELIPS  architecture and main  computational  modules 



4. ELIPS BUILDING BLOCKS AND THEIR HARDWARE IMPLEMENTATION 

4.1 The fuzzy set module: FSP 

The main function of a fuzzy set processor is signal transformation, which can be interpreted for example  as 
fuzzification - i.e. association between an input crisp signal and  a  degree of membership to a  fuzzy setlclass, or 
signal conditioning/ non-linear transformation, coordinate transformation. 

The FSP was designed as a processing module with 16 inputs of 5 membership classes each. The 
architecture of the FSP is presented in Figure 2. The chip has 16 analog voltage inputs and 16x5 outputs, and allows digital 
programmability of the  membership functions for each input variable. 

DIGITAL C 

Figure 2. FSP architecture 

The membership functions have trapezoidal shape, with programmable parameters for the legs and slopes as illustrated in 
Figure 3.  The position of the legs can be specified with 8-bit resolution and the slope with 5-bit resolution. The equations 
that describe the output of a trapezoidal membership function are: 

I f X < = A , Y = L o w  
If A < X = < (CD+AB)/(B+C), Y=MIN[BX-AB + Low), High] 
If (CD+AB)/(B+C) < X < D, Y=MIN[-CX + CD + Low), High] 
If X> = D,  Y= Low 

where A is the location of the left leg, B is the unsigned slope of the left leg, C is the unsigned slope of the right leg, and D is 
the location of the right leg. The chip design currently uses Low = 1 volt and High = 4 volts with Vdd = 5 volts. 

The schematic diagram in Figure 4 details the processing path of a  single membership function circuit (MFC). While inputs 
and outputs are in voltage mode for external compatibility, the internal MFC implementation is in current-mode. The input 
voltage enters the first processing block which is a Voltage to Current (V/I) converter. Currents proportional to  the digital 
values of the legs, A  and D, are generated in Multiplying Digital to Analog Converters (MDACs). The current corresponding 
to  the left leg gets subtracted from a copy of the input current, while a different copy of the input current gets subtracted from 
the right leg current. The resulting currents, which correspond to the left and right  sides of the trapezoid, enter their 
appropriate Dividing Digital to Analog Converter (divDAC) where the signals are divided by 5-bit digital values to scale the 
slopes. The minimum of the two resulting values is then selected which chooses the side that is along  the trapezoid. The top 
of the trapezoid is achieved by taking the minimum of the resulting current and the full-scale current, and this result is 
converted to  the voltage output of the MFC. A test chip for 2 input variable with 5 membership  functions calculating the 
degree of membership has been implemented and tested. A variety of membership functions generated by the chip is 
illustrated in Figure 4. 





0 

a 3 



I II II I I 







SNOISn73N03 



‘I I 

’0 I 

‘6 

‘8 

’L 
‘9 
‘S 

‘P 

’E 

’Z 

‘I 


